
Week 10

5 Relations and Partitions

Ch.22 of PJE.

In the last Section we defined congruence modulo m, showing that it
satisfied the three properties of being reflexive, symmetric and transitive.
We then defined congruence classes, using congruence modulo m, showing
that the classes satisfied the properties of being disjoint and the union of
them containing every integer.

We now generalize the ideas of congruences and congruence classes of Z
to any set X.

5.1 Relations

Definition 5.1.1 A relation on a non-empty set X is a non-empty subset
R ⊆ X ×X, i.e. a collection of ordered pairs.

If (a, b) ∈ R we say that a is related to b and write aRb or a ∼ b.

If (a, b) /∈ R we say that a is not related to b and write a ≁ b (we can
also write aNRb but it isn’t often used).

Note we have two ways of writing a relation, either as R, a set of ordered
pairs, or using ∼. We will use both notations.

Example 5.1.2 (i) Three different relations on Z could be

a) x < y, in which case R = {..., (1, 2) , (1, 19) , (−3, 0) , ...},

b) x = y in which case R = {..., (1, 1) , (100, 100) , (−3,−3) , ...} ,

c) x ≡ ymod 7 in which case R = {..., (1, 8) , (8, 1) , (−15, 6) , (21, 0) , ...}.

(ii) If A = {a, b, c, d, e, f} then

R = {(a, a) , (a, b) , (b, a) , (b, b) , (c, c) , (c, e) ,

(e, c) , (e, e) , (d, d) , (f, f)}

is a relation on A.
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(iii) R = {(x, x2) : x ∈ R} is a relation on R.

This relation is also the graph of the function f : R → R, x 7→ x2. This
can be represented pictorially as
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So R is represented by all the points on the parabola, a subset of the
Cartesian plane.

In fact, the graph of any function f : X → X, defined as

Gf = {(x, f (x)) : x ∈ X} ⊆ X ×X,

is a relation. But the converse is not true, not all relations are graphs of
functions.

Example 5.1.3 If X = {1, 2, 3} then

a) R1 = {(1, 1) , (2, 2)} is not the graph of a function since 3 is not related
to anything, i.e. it has no image,

b) R2 = {(1, 1) , (2, 3) , (1, 2) , (3, 2)} is not a graph of a function since 1
has two images.
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5.2 Equivalence Relations

Definition 5.2.1 Suppose that ∼ is a relation on a set X. Then

i) ∼ is reflexive if ∀a ∈ X, a ∼ a,

ii) ∼ is symmetric if ∀a, b ∈ X, a ∼ b⇒ b ∼ a,

iii) ∼ is transitive if ∀a, b, c ∈ X, a ∼ b and b ∼ c⇒ a ∼ c.

If ∼ satisfies all three parts then we say that ∼ is an equivalence relation.

Note that in (ii) or (iii) the elements a, b ∈ X or a, b, c ∈ X need not be
different.

Example 5.2.2 Let ∼ on R be given by

∀a, b ∈ R, a ∼ b iff a < b,

the order relation on R.

Is not reflexive since 1 ≮ 1,

Is not symmetric since 1 < 2 but 2 ≮ 1,

Is transitive, since if a < b and b < c then a < c.

Aside if a property does not hold give a counterexample, if it
does hold try to give a proof. For example, a < b, and b < c
means 0 < b − a and 0 < c − b. Add these together using the
fact that the sum of two positive numbers is positive to get 0 <
b− a+ c− b = c− a, which implies a < c. End of aside

Example 5.2.3 Let X = {1, 2, 3}.

(i) R1 = {(1, 2) , (2, 1) , (3, 3)} .

Is not reflexive since (1, 1) /∈ R1,

Is symmetric. (Check that if (a, b) ∈ R1 then (b, a) ∈ R1. There
are three checks to be made.)

Is not transitive since (1, 2) , (2, 1) ∈ R1 but (1, 1) /∈ R1 (so
a = 1, b = 2 and c = 1 in the definition of transitive, highlighting
the point above that a, b, c need not be different).
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(ii) R2 = {(1, 1) , (2, 2) , (3, 3)} .

Is reflexive,

Is symmetric,

Is transitive.

Hence R2 is an equivalence relation.

Important Equivalence relations on a general set X are generalisations of
congruences on Z.

We have already seen that for m ≥ 1 then x ∼ y defined by x ≡ ymodm
is an equivalence relation on Z.

We can give some examples of equivalence relations not based on congru-
ences in Z.

Example 5.2.4 Let X = Z and ∼ be given by x ∼ y if, and only if, 3x+8y
is divisible by 11. Show that ∼ is an equivalence relation.

Solution

Reflexive For any x ∈ Z we have 3x + 8x = 11x which is divisible by
11, so x ∼ x.

Symmetric: Let x, y ∈ Z and assume x ∼ y. Then

3x+ 8y is divisible by 11, i.e. 3x+ 8y = 11t

for some t ∈ Z. Note that

3y + 8x = 11y + 11x− 8y − 3x

= 11 (y + x)− (3x+ 8y)

= 11 (y + x− t) .

Hence is 3y + 8x is divisible by 11 and so y ∼ x.

Transitive: Let x, y, z ∈ Z and assume x ∼ y, y ∼ z. Then

3x+ 8y = 11n while 3y + 8z = 11m,
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for some integers n and m. Add these equations together to get

3x+ 11y + 8z = 11n+ 11m,

that is
3x+ 8z = 11 (n+m− y) .

Hence is 3y + 8z is divisible by 11 and so y ∼ z. �

Example 5.2.5 Let X = Z and ∼ be given by x ∼ y if, and only if,
(x− y) (x+ y) is divisible by 7. Show that ∼ is an equivalence relation.

Solution

Reflexive: For any x ∈ Z we have (x− x) (x+ x) = 0 which is divisible
by 7, so x ∼ x.

Symmetric: Let x, y ∈ Z and assume x ∼ y. Then

(x− y) (x+ y) = 7n,

for some n ∈ Z. Thus

(y − x) (y + x) = 7 (−n)

is divisible by 7 and hence y ∼ x.

Transitive: Let x, y, z ∈ Z and assume x ∼ y, y ∼ z. Then

(x− y) (x+ y) = 7n while (y − z) (y + z) = 7m,

for some integers n and m. Alternatively,

7n = x2 − y2 and 7m = y2 − z2.

Add together and get

7 (m+ n) = x2 − z2 = (x− z) (x+ z) .

Hence (x− z) (x+ z) is divisible by 7 and thus x ∼ z. �
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Example 5.2.6 Not given Let F be the set of fractions

F =
{a

b
: a, b ∈ Z, b 6= 0

}

.

Define ∼ on F by

a

b
∼

c

d
if, and only if, ad = bc.

Show that ∼ is an equivalence relation.

Reflexive: Starting from the fact that multiplication in integers is com-
mutative we have

ab = ba⇒
a

b
∼

a

b
.

Symmetric Again using the fact that multiplication in integers is com-
mutative

a

b
∼

c

d
⇒ ad = bc⇒ cb = da⇒

c

d
∼

a

b
.

Transitive

a

b
∼

c

d
⇒ ad = bc while

c

d
∼

e

f
⇒ cf = ed.

Multiply the first equality by f to get

adf = bcf = bed,

from the second equality. By the definition of F we have d 6= 0 so we
can divide by this to get af = be, which implies

a

b
∼

e

f
.

Thus ∼ is an equivalence relation. �
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5.3 Partitions

Definition 5.3.1 Let X be a non-empty set. A partition of X is a subset

Π ⊆ P (X) ,

i.e. a collection of subsets, such that

i) the sets in Π are non-empty, so A ∈ Π⇒ A 6= ∅,

ii) the sets in Π are disjoint, so

∀A1, A2 ∈ Π : A1 6= A2 ⇒ A1 ∩ A2 = ∅,

iii) the sets cover X, i.e. X =
⋃

A∈Π
A, or equivalently,

∀x ∈ X, ∃A ∈ Π : x ∈ A.

We call the sets in Π the parts of the partition.

Examples

(a) Possible partitions of Z are

(i)

Π= {{odd integers}, {even integers}} = {[0]
2
, [1]

2
} = Z2.

In general, for m ∈ N, Zm is a partition of Z.

(ii)
Π= {{n ∈ Z : n < 0} , {0} , {n ∈ Z : n > 0}} .

(b) But
{{n ∈ Z : n < 0} , {n ∈ Z : n > 0}}

is not a partition of Z since 0 is in no part.

Similarly
{{n ∈ Z : n ≤ 0} , {n ∈ Z : n ≥ 0}}

is not a partition of Z since the parts are not disjoint.

(c) If A = {a, b, c, d, e, f} then

Π = {{a, b} , {c, e} , {d} , {f}}

is a partition of A.
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5.4 From Relations to Partitions.

Just as we went from congruences (equivalence relations on Z) to congruence
classes (a partition of Z) we can go from an equivalence relation to a partition.

Definition 5.4.1 Suppose that ∼ is an equivalence relation on a non-empty
set X. For each a ∈ X define the equivalence class of a to be the set of
elements of X related to a. Denote this class by [a] so

[a] = {x ∈ X : x ∼ a} .

Alternative definitions are

[a] = {x ∈ X : xRa} = {x ∈ X : (x, a) ∈ R} .

Definition 5.4.2 The Quotient Space is the set of all equivalence classes

X/ ∼= {[a] : a ∈ X} .

Example 5.4.3 When X = Z and a ∼ b was a ≡ bmodm we wrote [a]m in
place of [a] and Zm in place of Z/ (≡ modm).

Aside What we managed to do for Zm was to define addition
and multiplication on Zm, to give it some “arithmetic structure”.
That would be the aim with other examples of X and ∼, but this
is not achieved in this course. End of aside

Question Why do we demand that ∼ is an equivalence relation? See the
proof of the next result which uses all three defining properties of an equiv-
alence relation.

Theorem 5.4.4 Suppose that ∼ is an equivalence relation on a non-empty
set X. Then for a, b ∈ X,

i) If a ∼ b then [a] = [b] ,

ii) If a ≁ b then [a] ∩ [b] = ∅.

Proof p.267 I omitted the proof in lectures but said that it was a simple
rewriting of the same result for congruence classes seen earlier. For this
reason it is examinable.
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(i) Assume a ∼ b. To show that [a] = [b] we need show that
[a] ⊆ [b] and [b] ⊆ [a].

Let k ∈ [a]. By definition of equivalence class this means k ∼ a.
Thus we have both k ∼ a and a ∼ b. So by transitivity k ∼ b.
Hence k ∈ [b] by definition of the class. True for all k ∈ [a]
means that [a] ⊆ [b].

Let ℓ ∈ [b]. By definition of the class this means ℓ ∼ b. Use
symmetry to write a ∼ b as b ∼ a. Thus we have both ℓ ∼ b and
b ∼ a. So by transitivity ℓ ∼ a. Hence ℓ ∈ [a] by definition of the
class. True for all ℓ ∈ [b] means [b] ⊆ [a].

Combining [a] ⊆ [b] and [b] ⊆ [a] gives [a] = [b].

(ii) Assume a ≁ b. Assume for a contradiction that [a] ∩ [b] 6= ∅,
so there exists c ∈ [a] ∩ [b]. From this we have both c ∈ [a] and
c ∈ [b].

From c ∈ [a] we get c ∼ a while c ∈ [b] gives c ∼ b. Use symmetry
to write c ∼ a as a ∼ c. Thus we have both a ∼ c and c ∼ b.
So, by transitivity, a ∼ b. This contradicts the assumption that
a ≁ b thus the last assumption in false, i.e. [a] ∩ [b] = ∅. �

Corollary 5.4.5 Suppose that ∼ is an equivalence relation on a non-empty
set X. Then X/ ∼ is a partition on X.

Proof One, and exactly one of a ∼ b or a ≁ b is true, so one and exactly one
of [a] = [b] or [a] ∩ [b] = ∅ is true, i.e. equivalence classes are either disjoint
or the identical. We never get partial intersection of classes. Every element
is in some class (the class labeled by it) and thus every class is non-empty.
Thus the collection of equivalence classes is a partition of X. �

Notation Given X/ ∼ is a partition on X write Π∼ for this partition, which
we say is induced by ∼.

Example 5.4.6 Let X = Z and ∼ be given by x ∼ y if, and only if,
(x− y) (x+ y) is divisible by 7. What do the equivalence classes look like?

Solution Note that (x− y) (x+ y) = x2 − y2 so (x− y) (x+ y) is divisible
by 7 if, and only if, x2 − y2 is divisible by 7.
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Look at some classes. So

[1] = {x ∈ Z : x ∼ 1} =
{

x ∈ Z : x2 − 1 is divisible by 7
}

=
{

x ∈ Z : x2 ≡ 1mod 7
}

= {x ∈ Z : x ≡ 1 or − 1 ≡ 6mod 7}

Look at a class containing an element not in this list, i.e.

[2] =
{

x ∈ Z : x2 − 22 is divisible by 7
}

=
{

x ∈ Z : x2 ≡ 4mod 7
}

= {x ∈ Z : x ≡ 2 or − 2 ≡ 5mod 7} .

All the classes can be written in terms of congruence classes mod 7 as

[1] = [1]
7
∪ [6]

7
, [2] = [2]

7
∪ [5]

7
, [3] = [3]

7
∪ [4]

7
and [0] = [0]

7
.

�

Example 5.4.7 Not given Let F be the set of fractions

F =
{a

b
; a, b ∈ Z, b 6= 0

}

.

and ∼ defined on F by
a

b
∼

c

d
if, and only if, ad = bc.

What do the equivalence classes look like?

Solution A class is
[a

b

]

=
{ c

d
: c, d ∈ Z.d 6= 0, ad = bc

}

.

This class has many labels, but a special one is where a, b are coprime, i.e.
gcd (a, b) = 1. In fact if gcd (a, b) = 1 and

c

d
∈
[a

b

]

,

then cb = da. Since b|LHS then b|RHS, i.e. b|da. Yet gcd (a, b) = 1 with
b|da implies b|d, i.e. d = bm for some m ∈ Z. Substituting back in gives
cb = bma, i.e. c = ma. Thus

[a

b

]

=
{ma

mb
: m ∈ Z

}

.

For example
[

−
5

6

]

=

{

...,
10

−6
,
−5

6
,
5

−6
,
−10

12
,
15

−18
, ...

}

.

We could then define the rational number −5/6 to be this class. The set of
classes, under this identification, would then be Q. �
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5.5 From Partitions to Relations.

Partitions lead to relations in the following way.

Definition 5.5.1 Given a partition Π of X define a relation ∼Π by

∀a, b ∈ X, a ∼Π b, if, and only if, ∃A ∈ Π : a, b ∈ A,

i.e. a and b lie in the same part of Π.

We say that ∼Πis the partition induced by Π.

Alternatively, the relation can be defined as the set of ordered pairs

RΠ = {(a, b) : a, b ∈ X, a ∼Π b}

= {(a, b) : ∃A ∈ Π with a, b ∈ A} .

Example 5.5.2 Let A = {a, b, c, d, e, f} and Π = {{a, c} , {b, d} , {e} , {f}}
be a partition of A. Then

RΠ = {(a, a) , (a, c) , (c, a) , (c, c) , (b, b) , (b, d)

(b, d) , (d, b) , (d, d) , (e, e) , (f, f)} .

Theorem 5.5.3 Let Π be a partition of X and ∼Π the associated relation.
Then ∼Π is an equivalence relation.

Proof p.265 Let Π be a partition of X.

Reflexive Let a ∈ X. Then there exists A ∈ Π such that a ∈ A. It is
then trivial to say that a, a ∈ A which is the definition of a ∼Π a.

Symmetric Let a, b ∈ X. Assume a ∼Π b. By definition of ∼Π there
exists A ∈ Π such that a, b ∈ A. It is then trivial to say that b, a ∈ A
which is the definition of b ∼Π a.

Transitive Let a, b, c ∈ X. Assume a ∼Π b and b ∼Π c. This means
there exist A1, A2 ∈ Π such that a, b ∈ A1 and b, c ∈ A2. Here b ∈ A1

and b ∈ A2 means that A1∩A2 6= φ. But by the definition of a partition
if classes are not disjoint they are identical, so A1 = A2 which we relabel
as simply A. Thus a, b, c ∈ A. Here a, c ∈ A is the definition of a ∼Π c
as required. �

See the appendix for details of starting with a partition Π on X, in-
ducing a relation ∼Π and then inducing a partition Π∼Π

. It can shown that
Π∼Π

= Π, i.e. you return to the beginning.

Alternatively you can start with a relation ∼ on X, induce a partition Π∼

and continue to induce a relation ∼Π∼
. Again you return to the beginning

since ∼Π∼
=∼.
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